调度器性能压测看过来

背景

源于一次线上 P0 故障,一个生产集群被误操作删除(不只是业务被删,是集群也被删了),集群规模较大,在集群恢复后 Pod 进行了重新、调度的过程,整个过程(从开始恢复集群到业务服务就绪)耗时略长,其中涉及到调度环节耗时的计算,由于当时监控服务也部署在集群中,导致故障时的调度器监控数据丢失,最后的最后,又回到了原点:故障驱动,自证清白。于是就有了 scheduler-stress-test 项目,就有了本篇关于此项目的介绍,希望可以帮助到有类似需求(调度器压测)的同志们。

实现

Metrics

能想到的最简单直观的办法,就是通过调度器暴露出来的 metrics 来计算调度性能,调度器指标定义文件:

k8s.io/kubernetes/pkg/scheduler/metrics/metrics.go

有如下几个关键指标:

指标 type query example
scheduler_e2e_scheduling_duration_seconds_count count sum(rate(scheduler_e2e_scheduling_duration_seconds_count{job=”advanced-scheduler”,profile=”default-scheduler”,result=”scheduled”}[5m])) by (instance)
scheduler_pending_pods gauge scheduler_pending_pods{queue=’active’, job=”default-scheduler”}
scheduler_e2e_scheduling_duration_seconds_bucket histogram histogram_quantile(0.99, sum(rate(scheduler_e2e_scheduling_duration_seconds_bucket{job=”default-scheduler”}[5m])) by (le))
scheduler_scheduling_algorithm_duration_seconds_bucket histogram histogram_quantile(0.99, sum by(le) (rate(scheduler_scheduling_algorithm_duration_seconds_bucket{job=”default-scheduler”}[5m])))
scheduler_binding_duration_seconds_bucket histogram histogram_quantile(0.99, sum by(le) (rate(scheduler_binding_duration_seconds_bucket{job=”default-scheduler”}[5m])))

从名字可以很清晰的看出来指标点的含义,这里不再赘述。

Condition

第二种方式是通过获取 Pod PodScheduled Condition 信息,通过计算其 LastTransitionTimeCreationTimestamp 时间差作为调度耗时。

分析

两种方式都可以得到调度耗时相关性能数据,但有一些差异,具体表现为:

前者的耗时比较精确,是调度器内存中保存的耗时,但缺少每个 Pod 的耗时,暴露的是所有 Pod 耗时分布,而 histogram 本身就会存在一定的误差。

后者的耗时则包含更多阶段的耗时:

  • LastTransitionTime 是调度器发起异步 Bind 请求且 kube-apiserver 收到请求后在实际保存数据到 Etcd 前设置的;
  • CreationTimestampkube-apiserver 收到创建请求后在保存到 Etcd 之前设置的;

所以 LastTransitionTimeCreationTimestamp 的结果会包含 Create 请求写 Etcd 的耗时(网络传输、写磁盘)、调度器 watch 到 Pod 的耗时(网络传输)、调度器请求 apiserver 到 apiserver 收到请求进行绑定的耗时(网络传输)等。由于 metav1.Time 结构在传输时采用 RFC3339 进行编码,只能精确到秒,因此会损失部分精度。

综上,无论采用那种方式进行统计,结果都会有一些误差,重要的是要理解误差来源,以及每种统计方式的结果代表的含义。在实际测试时,可以同时使用两种方式。

项目介绍

scheduler-stress-test 即通过 Condition 方式进行统计,使用方式参考 README.md。

环境准备

为了模拟大规模调度场景,您可以使用 kwok 创建所需数量的节点。创建的节点可能处于 NotReady 状态。为了能够将这些节点用于调度 Pod,必须为待调度的 Pod 添加一个 toleration,以容忍所有 NoSchedule 的污点。

为此,您应该执行以下步骤:

  1. 在您的 k8s 集群上安装 kwok,请参考 https://kwok.sigs.k8s.io/docs/user/kwok-in-cluster/;

  2. 在您的 k8s 集群上创建虚拟节点,可以参考如下命令

    cat << EOF > node.yaml 
    apiVersion: v1
    kind: Node
    metadata:
      annotations:
        node.alpha.kubernetes.io/ttl: "0"
        kwok.x-k8s.io/node: fake
      labels:
        beta.kubernetes.io/arch: amd64
        beta.kubernetes.io/os: linux
        kubernetes.io/arch: amd64
        kubernetes.io/hostname: {NODE_NAME}
        kubernetes.io/os: linux
        kubernetes.io/role: agent
        node-role.kubernetes.io/agent: ""
        type: kwok
      name: {NODE_NAME}
    spec:
      taints: # Avoid scheduling actual running pods to fake Node
        - effect: NoSchedule
          key: kwok.x-k8s.io/node
          value: fake
    status:
      allocatable:
        cpu: "64"
        ephemeral-storage: 1Ti
        hugepages-1Gi: "0"
        hugepages-2Mi: "0"
        memory: 250Gi
        pods: "110"
      capacity:
        cpu: "64"
        ephemeral-storage: 1Ti
        hugepages-1Gi: "0"
        hugepages-2Mi: "0"
        memory: 250Gi
        pods: "128"
      nodeInfo:
        architecture: amd64
        bootID: ""
        containerRuntimeVersion: ""
        kernelVersion: ""
        kubeProxyVersion: fake
        kubeletVersion: fake
        machineID: ""
        operatingSystem: linux
        osImage: ""
        systemUUID: ""
      phase: Running
    EOF

    # create nodes as you needed
    for i in {0..99}; do sed "s/{NODE_NAME}/kwok-node-$i/g" node.yaml | kubectl apply -f -; done

压测

下载代码并构建:

git clone https://github.com/k-cloud-labs/scheduler-stress-test.git 

make build

该工具支持两个命令:create 和 wait。

create 命令使用指定的模板文件,在 k8s 集群中以指定的并发级别创建指定数量的 pod。

wait 命令等待所有上述创建的 pod 被调度并连续打印结果。

示例:

# 创建 1000 个 pod,使用 1000 的并发级别(namespace: scheduler-stress-test)
sst create --kubeconfig=/root/.kube/config --count 1000 --concurrency 1000 --pod-template=pod.yaml

# 等待结果
sst wait --kubeconfig=/root/.kube/config --namespace=seduler-stress-test

上述示例使用项目中的 pod.yaml 作为模板,在 k8s 集群的 scheduler-stress-test 命名空间中创建了 1000 个 pod。然后等待并连续打印结果,您可以根据需要修改 pod.yaml 文件。

Enjoy it!!!


原文始发于微信公众号(云原生散修):调度器性能压测看过来

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之家整理,本文链接:https://www.bmabk.com/index.php/post/223472.html

(0)
小半的头像小半

相关推荐

发表回复

登录后才能评论
极客之家——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!