Datawhale十月组队学习_推荐系统
20201019所学
推荐系统中对于一般的one-hot编码进行了平滑处理。
如下图片所示:
Embedding其实是一种思想,主要目的是将稀疏的向量(如one-hot编码)表示转换成稠密的向量,下图直观的显示了one-hot编码和Embedding表示的区别于联系,即Embedding相当于是对one-hot做了平滑,而onehot相当于是对Embedding做了maxpooling
目前主流的Embedding技术主要可以分为三大类。
- text embedding
- image embedding3. graph embedding
在推荐系统领域,text embedding技术是目前使用最多的embedding技术,对于文本特征可以直接使用该技术,对于非文本的id类特征,可以先将其转化成id序列再使用text embedding的技术获取id的embedding再做召回。
常见的text Embedding的技术有: - 静态向量:word2vec, fasttext, glove
- 动态向量:ELMO, GPT, BERT
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之家整理,本文链接:https://www.bmabk.com/index.php/post/165195.html