《Java 虚拟机》运行期优化

得意时要看淡,失意时要看开。不论得意失意,切莫大意;不论成功失败,切莫止步。志得意满时,需要的是淡然,给自己留一条退路;失意落魄时,需要的是泰然,给自己觅一条出路《Java 虚拟机》运行期优化,希望对大家有帮助,欢迎收藏,转发!站点地址:www.bmabk.com,来源:原文

《Java 虚拟机》 专栏索引
👉基本概念与内存结构
👉垃圾回收
👉类文件结构与字节码技术
👉类加载阶段
👉运行期优化
👉 happens-before 与锁优化

🟧1. 分层编译

为了在程序启动响应速度运行效率之间达到最佳平衡,HotSpot 虚拟机启用了分层编译(Tiered Compilation)的策略,。分层编译根据编译器编译、优化的规模与耗时,划分出不同的编译层次:

  • 第 0 层:程序解释执行,解释器不开启性能监控功能(Profiling),可触发第一层编译。
  • 第 1 层:使用 C1 即时编译器编译执行(不带 profiling)
  • 第 2 层:使用 C1 即时编译器编译执行(带基本的 profiling)
  • 第 3 层:使用 C1 即时编译器编译执行(带完全的 profiling)
  • 第 4 层:使用 C2 即时编译器编译执行,将字节码编译为本地代码。

profiling 是指在运行过程中收集一些程序执行状态的数据,例如【方法的调用次数】,【循环的 回边次数】等。

即时编译器(JIT)与解释器的区别:

  1. 解释器
    1.1 将字节码解释为机器码,下次即使遇到相同的字节码,仍会执行重复的解释
    1.2 是将字节码解释为针对所有平台都通用的机器码
  2. 即时编译器
    2.1 JIT(Just In Time Compiler) 是将一些字节码编译为机器码,并存入 Code Cache,下次遇到相同的代码,直接执行,无需再编译
    2.2 根据平台类型,生成平台相关的机器码

对于大部分的不常用的代码,我们无需耗费时间将其编译成机器码,而是采取解释执行的方式运行;另一方面,对于仅占据小部分的热点代码,我们则可以将其编译成机器码,以达到理想的运行速度。 执行效率上简单比较一下 Interpreter < C1 < C2,总的目标是发现热点代码(hotspot 名称的由来),并优化这些热点代码。

🟧2. 逃逸分析

逃逸分析(Escape Analysis)简单来讲就是,Java Hotspot 虚拟机可以分析新创建对象的使用范围,并决定是否在 Java 堆上分配内存的一项技术。

逃逸分析的 JVM 参数如下:

  • 开启逃逸分析:-XX:+DoEscapeAnalysis
  • 关闭逃逸分析:-XX:-DoEscapeAnalysis
  • 显示分析结果:-XX:+PrintEscapeAnalysis

逃逸分析技术在 Java SE 6u23+ 开始支持,并默认设置为启用状态,可以不用额外加这个参数。

🟠2.1 对象逃逸状态

1、全局逃逸(GlobalEscape)

一个对象的作用范围逃出了当前方法或者当前线程,有以下几种场景:

  • 对象是一个静态变量,类变量
  • 对象是一个已经发生逃逸的对象,可以在其他线程中访问到
  • 作为调用参数传递到其他方法中

2、参数逃逸(ArgEscape)

一个对象被作为方法参数传递或者被参数引用,但在调用过程中不会发生全局逃逸,这个状态是通过被调方法的字节码确定的。

3、没有逃逸

方法中的对象没有发生逃逸。

🟠2.2 逃逸分析优化

针对上面第三点,当一个对象没有逃逸时,可以得到以下几个虚拟机的优化。

🔸2.2.1 同步消除

线程同步是一个相对耗时的过程,如果逃逸分析能够确定一个变量不会逃出线程,无法被其他线程访问,那么读写就不存在竞争了,对这个变量的同步措施可以消除掉了。

例如,StringBuffer 和 Vector 都是用 synchronized 修饰线程安全的,但大部分情况下,它们都只是在当前线程中用到,这样编译器就会优化移除掉这些锁操作。

锁消除的 JVM 参数如下:

  • 开启锁消除:-XX:+EliminateLocks
  • 关闭锁消除:-XX:-EliminateLocks

同步消除(锁消除)在 JDK8 中都是默认开启的,并且锁消除都要建立在逃逸分析的基础上。

🔸2.2.2 标量替换

首先要明白标量和聚合量,基础类型和对象的引用可以理解为标量,它们不能被进一步分解。而能被进一步分解的量就是聚合量,例如 Java 中的对象。

如果把一个 Java 对象拆散,根据程序访问的情况,将其使用到的成员变量恢复原始类型来访问就叫做标量替换

这样,如果一个对象没有发生逃逸,那程序在执行时压根就不用创建它,而改为直接创建它的若干个被这个方法使用到的成员变量来代替,将对象拆分后,只会在栈上或者寄存器上创建它用到的成员标量,节省了内存空间,也提升了应用程序性能。

标量替换的 JVM 参数如下:

  • 开启标量替换:-XX:+EliminateAllocations
  • 关闭标量替换:-XX:-EliminateAllocations
  • 显示标量替换详情:-XX:+PrintEliminateAllocations

标量替换同样在 JDK8 中都是默认开启的,并且都要建立在逃逸分析的基础上。

🔸2.2.3 栈上分配

当对象没有发生逃逸时,该对象就可以通过标量替换分解成成员标量分配在栈内存中,和方法的生命周期一致,随着栈帧出栈时销毁,减少了 GC 压力,提高了应用程序性能。

🟧3. 方法内联

🟠3.1 内联函数

C++ 是否为内联函数由自己决定,Java 由编译器决定。Java 不支持直接声明为内联函数,如果想让它内联,你只能够向编译器提出请求: 关键字 final 修饰 用来指明那个函数是希望被 JVM内联的,如:

public final void doSomething() {  
      // to do something  
}

总的来说,一般的函数都不会被当做内联函数,只有声明了 final 后,编译器才会考虑是不是要把你的函数变成内联函数。

JVM 内建有许多运行时优化,首先短方法更利于JVM 推断。流程更明显,作用域更短,副作用也更明显。如果是长方法 JVM 可能直接就崩了。

🟠3.2 方法内联

如果 JVM 监测到一些小方法被频繁的执行,它会把方法的调用替换成方法体本身,如:

private int add4(int x1, int x2, int x3, int x4) { 
	  //这里调用了add2方法
      return add2(x1, x2) + add2(x3, x4);  
  }  

  private int add2(int x1, int x2) {  
      return x1 + x2;  
  }

方法调用被替换后

private int add4(int x1, int x2, int x3, int x4) {  
	//被替换为了方法本身
    return x1 + x2 + x3 + x4;  
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

文章由极客之音整理,本文链接:https://www.bmabk.com/index.php/post/156982.html

(0)
飞熊的头像飞熊bm

相关推荐

发表回复

登录后才能评论
极客之音——专业性很强的中文编程技术网站,欢迎收藏到浏览器,订阅我们!