1、报错
Traceback (most recent call last):
File "main.py", line 419, in <module>
main()
File "main.py", line 209, in main
loss_temp, train_prec1_temp, train_prec5_temp = train(train_loader, model, criterion, optimizer, epoch)
File "main.py", line 275, in train
prec1, prec5 = accuracy(output, target, topk=(1, 5))
File "main.py", line 395, in accuracy
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead
2、分析原因
这是因为view()需要Tensor中的元素地址是连续的,但可能出现Tensor不连续的情况,所以先用 .contiguous()。将其在内存中变成连续分布即可。
3、解决方案
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
运行,成功解决问题
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
文章由极客之家整理,本文链接:https://www.bmabk.com/index.php/post/99832.html